Program Verification and Prolog

Krzysztof R. Apt

Abstract

‘We show here that verification of Prolog programs can be sys-
tematically carried out within a simple framework which comprises
syntactic analysis, declarative semantics, modes and types. We ap-
ply these techniques to study termination, partial correctness, occur-
check freedom, absence of errors and absence of floundering. Finally,
we discuss which aspects of these techniques can be automated.
Notes. This research was partly supported by the ESPRIT Basic
Research Action 6810 (Compulog 2). A preliminary, shorter, version
of this paper appeared as Apt [3].

1 Introduction
1.1 Motivation

Prolog is 20 years old and so is logic programming. However, they were
developed separately and these two developments never really merged. The
first track is best exemplified by Sterling and Shapiro [36], which puts
emphasis on programming style and techniques, and the second by Lloyd
[25], which concentrates on the theoretical foundations. As a result of these
separate developments, until recently little work was done on verification
and development of Prolog programs.

It is natural and almost self-evident to base verification of Prolog pro-
grams on the theory of logic programming. However, the choices made in
logic programming theory do not necessarily coincide with those made in
Prolog (like the choice of a selection rule) and its extensions and modifica-
tions. Some new issues (like the occur-check problem) need to be addressed
and additional results (like those dealing with termination) need to be es-
tablished.

The aim of this chapter is to provide an overview of our recent work on
verification of Prolog programs. We show that many relevant properties
of Prolog programs can be established by means of simple arguments. In
particular, we explain how termination and partial correctness can be dealt
with by studing declarative interpretation of logic programs. Termination
is handled by techniques developed in Apt and Pedreschi [8] and Apt and
Pedreschi [9].

We also study here run-time properties. These are properties which

55

56 Program Verification and Prolog

refer to the program execution. Examples of such properties include the
absence of the occur-check problem, which states that the omission of the
occur-check in the unification algorithm does not result in incorrect use of
unification, and the absence of run-time errors in the presence of arithmetic
operations.

To prove run-time properties of Prolog programs we introduce increas-
ingly more powerful tools. When dealing with the occur-check problem and
with the absence of floundering in presence of negation we use syntactic
analysis and modes. We follow here the approach of Apt and Pellegrini
[10]. Then, when dealing with the absence of run-time errors for Prolog
programs with arithmetic, we use directional types, proposed recently by
Bronsard, Lakshman and Reddy [14].

1.2 Terminology and Notation

We work here with gqueries, that is sequences of atoms, instead of goals,
that is comstructs of the form « @, where Q is a query. We denote by
O the empty query. Throughout the chapter we restrict attention to one
selection rule, namely Prolog’s leftmost selection rule. We refer to SLD-
resolution with the leftmost selection rule as LD-resolution. All proof-
theoretic notions, such as the computed answer substitution, refer to LD-
resolution.

Given two syntactic expressions E and F, we say that E is more general
than F, and write E < F, if E6 = F for some substitution #. We denote
the set of variables occurring in an expression E by Var(E). Given a list t
we write a € t when ais a member oft and a ¢ t when a is not a member
of t. Also, we identify here constants with 0-ary function symbols.

Apart from this we use the standard notation of Lloyd [25] and Apt [2].
In particular, for a program P, Bp stands for its Herband base, Mp stands
for its least Herbrand model, ground(P) for the set of all ground instances
of clauses of P, and [A] for the set of all ground instances of the atom A.

2 Setting the Stage

2.1 Syntax

We shall deal here with three subsets of Prolog.
2.1.1 Pure Prolog

The syntax of programs written in this subset coincides with the customary
syntax of logic programs, though the ambivalent syntar and anonymous
variables are allowed.

Let us explain both concepts. In first-order logic, and consequently in
logic programming, it is assumed that function symbols and relation sym-
bols of different arity form mutually disjoint classes of symbols. While this
assumption is rarely stated explicitly, it is a folklore postulate in mathe-
matical logic which can be easily tested by exposing a logician to Prolog

Krzysztof R. Apt 57

syntax and waiting for his protests. Namely, in contrast to first-order
logic, Prolog allows ambivalent syntax. Thus we can use a binary relation
symbol member, unary function symbol member and a binary function sym-
bolmember, and build syntactically legal facts like member (member(a,b) ,
[c, member(a)]). Such expressions can be uniquely parsed once the con-
text is given in which they occur.

The ambivalent syntax at this level is not an issue and it is safe to
assume it when studying formally pure Prolog programs. The ambivalent
syntax becomes an interesting subject at the moment of considering meta-
interpreters which use the clause relation — see Kalsbeek [21] and Martens
and De Schreye [28] for recent work on this topic. All in all, it is a minor
point in this article but still worth mentioning.

Prolog also allows so-called anonymous variables, written as “_” (under-
score). These variables have a special interpretation, because each occur-
rence of “_” in a query or in a clause is interpreted as a different variable.
Thus by definition each anonymous variable occurs in a query or a clause
only once. Anonymous variables form a simple and elegant device which
sometimes increases the readability of programs in a remarkable way.

2.1.2 Pure Prolog with Arithmetic

This subset extends the previous one by allowing in the bodies of the pro-
gram clauses the arithmetic comparison operators <, <, =:=,#, >,> and
the binary “is” relation of Prolog.

2.1.3 Pure Prolog with Negation

This subset extends the first one by allowing negative literals in the bodies
of the program clauses. Thus it coincides with the syntax of general logic
programs.

The methods discussed in this chapter can be readily used to deal with
the “union” of the last two subsets, that is pure Prolog with arithmetic
and negation.

When considering a specific logic program one has to fix a first-order
language w.r.t. which it is analyzed. Usually, one associates with the
program the language determined by it — its function and relation symbols
are the ones occurring in the program (see, e.g., Lloyd [25] and Apt [2]).
Another choice was made by Kunen [23] who assumed a universal first-
order language with infinitely many function and relation symbols in each
arity, in which all programs and queries are written. One can think of this
language as the language defined by a Prolog manual.

In this chapter we follow Kunen’s choice. In contrast to the other alter-
native it imposes no syntactic restriction on the queries which may be used
for a given program. This better reflects the reality of programming. In
Section 2.3 we shall indicate another advantage of this choice. Of course,
the sets ground(P) and [A] refer to the ground instances in this universal

58 Program Verification and Prolog

language. All considered interpretations are interpretations of this univer-
sal language.

2.2 Proof Theory
Let us now explain the proof theory for the three subsets introduced above.
2.2.1 Pure Prolog

We use, as expected, the LD-resolution. However, in most implementations
of Prolog, unification without the occur-check is used. Hence we have to
deal with this issue.

Moreover, we assume that, as in Prolog, the clauses of the program
are ordered. This ordering will be reflected in the considered LD-trees. It
should be added, however, that in our approach to correctness the ordering
of the clauses will never play any role. In other words, our approach
will not be able to distinguish between programs which differ only by the
clause ordering. We shall return to this point in Section 3.1, when studying
termination.

2.2.2 Pure Prolog with Arithmetic
Consider the program QUICKSORT:

gs(Xs, ¥Ys) « Ys is an ordered permutation of the list Xs.
qs([X | Xs], Ys) «

part(X, Xs, Littles, Bigs),

gs(Littles, Ls),

gs(Bigs, Bs),

app(Ls, [X | Bs], Ys).
qs(01, .

part(X, Xs, Ls, Bs) <« Ls is a list of elements of Xs which are < X,

Bs is a list of elements of Xs which are > X.
part (X, [YIXs], [YiLs]l, Bs) « X > Y, part(X, Xs, Ls, Bs).
part(X, [YIXs], Ls, [YIBs]) « X <Y, part(X, Xs, Ls, Bs).
part(_, [1, [1, [1).

augmented by the APPEND program defined by:

app(Xs, Ys, Zs) « Zsis the concatenation of the lists Xs and Ys.
app([X | Xs], ¥s, [X | Zs]) « app(¥s, Ys, Zs).
app([l, ¥s, Ys).

When studying it formally as a Prolog program we have to decide the
status of the built-in’s > and <. Are they some further unspecified relation
symbols whose definitions we can ignore? Well, with this choice we face
the following problem. In Prolog the relations > and < are built-in’s whose
evaluation results in an error when its arguments are not ground arithmetic
expressions (in short, gae’s). Consequently, the query qs([3,4,X,7],
[3,4,7,8]) results in an error at the moment the variable X becomes an

Krzysztof R. Apt 59

argument of >.

Now, logic programming does not have any facilities to deal with run-
time errors, but at least one could consider trading them for failure. Un-
fortunately, this is not possible. Otherwise, for some terms s and t the
query s>t would succeed, and then by the Lifting Lemma the query X>Y
would succeed as well. So what is the conclusion? The standard theory
of logic programming cennot be used to capture properly the behaviour of
the built-in’s > and <, and it is not possible to model the fact that the
query qs([3,4,%,7], [3,4,7,8]) results in an error.

To model Prolog’s interpretation of arithmetic relations within logic
programming we follow Kunen [22]. First, we extend the LD-resolution by
stipulating that an LD-derivation ends in an error when at the moment
of evaluation the arguments of the comparison relations are not gae’s. In
the case of the assignment s is t, an error results when at the moment of
evaluation t is not a gae.

Next, we add to each program infinitely many clauses which define the
ground instances of the used arithmetic relations. Given a gae n we denote
by val(n) its value. For example, val(3+4) equals 7. So for < we add the
following set of unit clauses:

M. ={m<n |m, nare gae’s and val(m)<val(n)},
for “is” we add the set
Mjg = {val{n) is n |nis a gae},

etc. So, for example, 7 is 34+ 4 € M;g. We also assume that, conforming
to the status of built-in’s, in the original program arithmetical relations are
not used in clause heads.

These added clauses allow us to compute resolvents when the selected
atom involves an arithmetic relation. For example, the query X is 3+4, X
< 2+3 resolves to only one query, namely 7 < 2+3 (using the clause 7 is
3+4) and the query 7 < 2+3 fails. Thus all LD-derivations of the query X
is 3+4, X < 2+3 fail, which agrees with Prolog’s interpretation.

Note that thanks to the “ending in an error” provision every query with
a selected atom involving an arithmetic relation has at most one descendant
in every LD-tree. Consequently, in spite of the fact that the considered pro-
grams contain now infinitely many clauses, the resulting LD-trees remain
finitely branching.

2.2.3 Pure Prolog with Negation

As expected, to interpret these programs we use the SLDNF-resolution
with the leftmost selection rule, further referred to as LDNF-resolution.
Less expected is the fact that the usual definition of the SLDNF-resolution
given in Lloyd [25] needs to be modified.

We leave to the reader the task of checking that according to the defini-

60 Program Verification and Prolog

tion of SLDNF-resolution given in Clark [16] and reproduced in Lloyd [24]
it is not clear what is the SLDNF-derivation for the program P = {p « p},
and the query —p, whereas according to the definition given in Lloyd [25]
no SLDNF-derivations exist for the program P = {p+« —p} and query
p. The problem with the first definition is that it is circular and not all
cases for forming a resolvent are defined, whereas the latter definition is
mathematically correct, but more restrictive than the first one.

It should be pointed out here that the latter definition is sufficient for
proving soundness and various forms of completeness of SLDNF-resolution.
However, when reasoning about termination of Prolog programs we need
to have at our disposal a definition of SLDNF-resolution (with the leftmost
selection rule) which properly formalizes the computation process and not
only correctly predicts the computed results.

Such a definition was proposed by Martelli and Tricomi [27]. In their
revision the subsidiary trees used to resolve negative literals are built “in-
side” the main tree. Another solution was suggested later in Apt and Doets
(5] where, as in the original definition, the subsidiary trees are kept “aside”
of the “main” tree but their construction is no longer viewed as an atomic
step in the resolution process.

Additionally, when studying the LDNF-resolution we need to modify
the definition of floundering. It occurs when a negative non-ground literal
is selected. We say that PU {Q} does not flounder if no LDNF-derivation
of P U{Q} flounders.

It is perhaps useful to recall here that Prolog ignores floundering. This
leads to a number of well-known complications and explains why it is nat-
ural to seek conditions which ensure absence of floundering. In fact, our
methods for proving termination and partial correctness of general pro-
grams do rely on the absence of floundering.

2.3 Semantics

There is no universal agreement as to what is the declarative semantics of a
logic program. In this chapter we advocate for a program without negation
the use of its least Herband model as its declarative semantics. However,
we have to be careful when making this seemingly unique choice.

Consider the proverbial APPEND program. With the first choice of Sub-
section 2.1 the underlying first-order language has only one constant, viz.
(1, and one, binary, function symbol [.[.]. Thus the Herbrand universe
consists of all ground lists whose flattened form is a list with all elements
equal to []. Call such lists trivial. It is easy to see that then

MyppgnD = {app(s,t,u) | s,t,u are trivial lists and s *t = u},

where “*” denotes the operation of concatenating two lists. This is the se-
mantics of the APPEND program given in Sterling and Shapiro [36]. Clearly,
it cannot be used to render the meaning of queries in which function sym-

Krzysztof R. Apt 61

bols other than [] and [.1.] are used.

As soon as the underlying first-order language has another constant
than [, and so in particular in our case, the Herbrand universe contains
elements which are not lists. Consequently, on the account of the sec-
ond clause of APPEND, MppgNp contains elements of the form app(s,t,u)
where neither t nor u is a list. (On the other hand, it is still the case that
whenever app(s,t,u) € MpppgND, then s is a list.) So the choice of the
first-order language affects the structure of the least Herbrand models of
the considered programs.

The fact that APPEND and various other well-known programs do ad-
mit “ill-typed” atoms in their least Herbrand models complicates matters
somewhat. To simplify our presentation we therefore continue our discus-
sion with the “correctly typed” version of APPEND, which we denote by
APPEND-T:

app([X | Xs], ¥s, [X | Zs]) « app(Xs, Vs, Zs).
app([1, Ys, ¥Ys) « 1list(¥s).

augmented by the LIST program defined by:

list(Xs) « Xs is a list.
list([_ | Ts]) « 1list(Ts).

list([1).
Note that
MyppEND_T = {app(s,t,u)| s,t,u are g. lists,s *t = u}
U MpisT,
where

My 1sT = {list(s)| s is a g. list}.

Here and elsewhere “g. list(s)” stands for “ground list(s)”.

We shall return to the original program APPEND in Section 6.1. Discus-
sion of the semantics of the other two fragments of Prolog is postponed
until Sections 4.2 and 5.3.

3 Pure Prolog

We now discuss correctness of programs written in the three defined subsets
of Prolog. We start with pure Prolog.

3.1 Termination

First we consider termination. We present here the approach of Apt and
Pedreschi [8]. It is a modification of a method of Bezem [12] which deals
with termination w.r.t. all selection rules. For simplicity we restrict our
attention here to one atom queries. We recall the relevant concepts.

62 Program Verification and Prolog

Definition 3.1 A program is called left terminating if all its LD-deri-
vations starting with a ground query are finite. 0

To prove that a program is left terminating, and to characterize the
queries that terminate w.r.t. such a program, the following notions are
introduced.

Definition 3.2

e A level mapping for a program P is a function | | : Bp — N from
ground atoms to natural numbers. For A € Bp, |A| is the level of A.

o An atom A is called bounded with respect to a level mapping | |, if | |
is bounded on the set [A] of ground instances of A. For A bounded
w.r.t. | |, we define |A|, the level of A w.r.t. ||, as the mazimum | |
takes on [A].

o A clause is called acceptable with respect to || and an interpretation
I, if I 1s its model and for every ground instance A — A,B,B of it
such that I = A

|A] > |B|.

e A program P is called acceptable with respect to || and I, if all its
clauses are. P 1is called acceptable if it is acceptable with respect to
some level mapping and an interpretation. 0

The following results link the introduced notions.

Theorem 3.3 Let P be acceptable w.r.t. || and I. Then, for every atom
A bounded w.r.t. | |, all LD-derivations of PU{A} are finite. In particular,
P is left terminating.]

Theorem 3.4 Let P be a left terminating program. Then, for some level
mapping | | and a Herbrand interpretation I,

(i) P is acceptable w.r.t. || and I,

(i) for every atom A, all LD-derivations of P U {A} are finite iff A is
bounded w.r.t. | |. O

The model I represents the limited declarative knowledge needed to
prove termination. Note that using Theorem 3.3 we deal can only establish
termination of a query w.r.t. a left terminating program and we use here
the notion of so-called “universal” termination, according to which the
query terminates irrespectively of the clause ordering. We found that this
strong form of termination is satisfied by most pure Prolog programs and
queries counsidered in standard books on Prolog.

To see how this method of proving termination can be applied to specific
programs we now consider a couple of examples. When dealing with them
we use the following function | | from ground terms to natural numbers:

[lz|zs]| = |zs| +1,
f (@1, za)| = 0FEF # [.].].

Krzysztof R. Apt 63

Then for a list zs, |zs| equals its length.

Palindrome
First, let us consider a program whose proof of termination does not
involve the choice of the model I. In the following program PALINDROME~T:

palindrome(Xs) « the list Xs equals to its reverse.
palindrome(Xs) « reverse(Xs, Xs).

reverse(Xs, Ys) +« Ysis the reverse of the list Xs.
reverse(X1s, X2s) « reverse(Xis, [], X2s).

reverse(Xs, Ys, Zs) <« Zs is the result of concatenating

the reverse of the list Xs and the list Ys.
reverse([X | Xis], X2s, Ys) « reverse(X1s, [X | X2s], Ys).
reverse([], Xs, Xs) « 1list(Xs).

augmented by the LIST program,

the body of each clause has at most one atom. In this case the reduc-
tion of the level mapping required in the definition of acceptability has to
be achieved irrespective of the choice of the model of the program. The
following level mapping | | does the job:

|[palindrome(xs)] = 2-|xs|+3,
|reverse(xs,ys)] = 2-|xs|+2,
|reverse(xs,ys,zs)] = 2-|xs|+ |ys|+1,
|list(xs)] = |xs|.

We leave it to the reader to check that PALINDROME-T is indeed acceptable
w.r.t. the level mapping | | and the Herbrand model Bppr INDROME-T
(or any other model) of PALINDROME-T. Moreover, for a list xs, the query
palindrome(xs) is bounded w.r.t. || and consequently, by Theorem 3.3,
all LD-derivations of PALINDROME-T U {palindrome(xs)} are finite.

Sequence

The choice of the level mapping and of the model can affect the class
of queries whose termination can be established. To see this consider the
following problem from Coelho and Cotta [17] (see page 193) and its for-
malization in Prolog: arrange three 1’s, three 2’s, ..., three 9’s in sequence
so that for all ¢ € [1,9] there are exactly ¢ numbers between successive
occurrences of 1.

sublist(Xs, Ys) <« Xs is a sublist of the list ¥s.
sublist(Xs, Ys) « app(., Zs, Ys), app(Xs, -, Zs).

sequence(Xs) + Xsis a list of 27 elements.
Sequence([—,—,-,—,—,-,-,—,-,—,—,—,—,-’—,—,—,-,—,—,-,—,—,—,—,—:-])-

64 Program Verification and Prolog

question(Ss) <« Ssis the desired list of 27 elements.
question(Ss) «
sequence(Ss),
sublist([1,_,1,_,1], Ss),
sublist([2,.,_,2,_,-,2], Ss),
sublist([3,_,_,.,3,-,-,-,3], Ss),
sublist([4,_,_,_,_,4,_,_,_,_,4], Ss),
sublist([5,.,-,-,-5-35,-,-5-5-5-,5], Ss),
sublist([6, 5 5-y—3—3-36,-5-3-3-5-5-,6]1, Ss),
sublist (7, 5y yssososTrcscrosas—s—s—sT], S8),
sublist (8, sy sososor=38s—s—s—s—r—s—3-2-281, S8),
SUbLlist (9, 5y msmsmsmsmr—sDsmsss—s—s—s-2—3-591, S8).

augmented by the APPEND-T program.

Call the above program SEQUENCE-T. For those curious to know, there are
6 solutions to this problem, generated by the above program:

| ?- question(Ss).

ss = [7,5,3,8,6,9,3,5,7,4,3,6,8,5,4,9,7,2,6,4,2,8,1,2,1,9,1];
Ss = [3,4,7,9,3,6,4,8,3,5,7,4,6,9,2,5,8,2,7,6,2,5,1,9,1,8,1];
Ss = [3,4,7,8,3,9,4,5,3,6,7,4,8,5,2,9,6,2,7,5,2,8,1,6,1,9,1];
ss = [1,9,1,6,1,8,2,5,7,2,6,9,2,5,8,4,7,6,3,5,4,9,3,8,7,4,3];
ss = [1,8,1,9,1,5,2,6,7,2,8,5,2,9,6,4,7,5,3,8,4,6,3,9,7,4,3];
ss = [1,9,1,2,1,8,2,4,6,2,7,9,4,5,8,6,3,4,7,5,3,9,6,8,3,5,7] ;
no

It is straightforward to verify that SEQUENCE-T is acceptable w.r.t. the
level mapping | | defined by:

|question(xs)| = |xs|+ 30,
|sequence(xs)] = 0,
[sublist(xs,ys)| = |[xs|+ |ys|+2,
lapp(xs,ys,2s)| = min(|xs|,|zs]) +1,

|list(xs)]

Il

|xs],

and the model Bggquencg-T- However, with this choice of the level map-
ping we face the problem that the atom question(Ss) is not bounded.
Consequently, we cannot use Theorem 3.3 to prove termination of this

Krzysztof R. Apt 65

query. In fact, using this level mapping we can only prove that for s
ground, all LD-derivations of SEQUENCE-T U {question(s)} are finite.

To prove the stronger termination property we change the above level
mapping by putting

|question(xs)] = 57,
and choose any model I of SEQUENCE-T such that for a ground s
I |= sequence(s) iff s is a list of 27 elements.

Then SEQUENCE-T is acceptable w.r.t. | | and I. Moreover, the query
question(Ss) is now bounded w.r.t. | | and consequently, by Theorem
3.3, all LD-derivations of SEQUENCE-T U {question(Ss)} are finite.

3.1.1 An Improvement

The definition of acceptability requires a strict decrease of the level mapping
from the clause head to the atoms of the clause body. Apt and Pedreschi [9]
observed that this requirement can be relaxed in the case of non-recursive
calls. This leads to an alternative definition of acceptability, that we qualify
with the prefix semi. This notion is actually equivalent to the original one,
but it gives rise to a more flexible proof method.

To describe this modification we need to define first when two relation
symbols occurring in a program are mutually recursive.

Definition 3.5 Let P be a program and p,q relation symbols occurring in
it.
e We say that p refers to q in P if there is a clause in P that uses p in
its head and q in its body.
e We say that p depends on q in P, and write p J q, if (p,q) is in the
reflezive, transitive closure of the relation refers to.
o We say that p and q are mutually recursive, and writep ~ q, ifp J g
and ¢ 3 p. In particular, p and p are mutually recursive. m}

We also write p J ¢ when p 3 ¢ and ¢ Z p. The following definition
of semi-acceptability exploits the introduced orderings over the relation

symbols. We denote here by rel(A) the relation symbol occurring in atom
A.

Definition 3.6 Let P be a program, | | a level mapping for P and I an
interpretation.

o A clause of P is called semi-acceptable with respect to | | and I, if
I is its model and for every ground instance A +— A, B,B of it such
that I = A

x |A| > |B| if rel(A) ~ rel(B),
* |A| > |B| if rel(A) T rel(B).

66 Program Verification and Prolog

e A program P is called semi-acceptable with respect to || and I, if
all its clauses are. P is called semi-acceptable if it is semi-acceptable
with respect to some level mapping and an interpretation. O

Thus the level mapping is required to decrease from an atom A in the
head of a clause to an atom B in the body of that clause only if the relations
of A and B are mutually recursive. Additionally, the level mapping is
required not to increase from A to B if the relations of A and B are not
mutually recursive.

The following observations are immediate.

Note 3.7 If a program is acceptable w.r.t. | | and I, then it is semi-
acceptable w.r.t. | | and I. o

Note 3.8 If a program is semi-acceptable w.r.t. | | and I, then it is accept-
able w.r.t. a level mapping || || and the same interpretation I. Moreover,

for each atom A, if A is bounded w.r.t. | |, then A is bounded w.r.t. || ||.
a

This brings us to the following conclusion.
Corollary 3.9 A program is acceptable iff it is semi-acceptable. o
To see how the notion of semi-acceptability leads to more natural level

mappings reconsider the programs studied before.

Palindrome

When proving that PALINDROME-T is acceptable, we had to repeatedly
use “+1” to ensure the decrease of the level mapping. Now a simpler level
mapping | | suffices:

|palindrome(xs)| = 2-|xs|,
|reverse(xs,ys)] = 2-|xs|,
|reverse(xs,ys,zs)] = 2-|xs|+]ys|,
[List(xs)| = |[xs|.

It is straightforward to check that PALINDROME-T is semi-acceptable w.r.t.
the level mapping | | and BpALINDROME-T-

Sequence
It is easy to see that SEQUENCE-T is semi-acceptable w.r.t. the level
mapping | | defined by:
|question(xs)] = 54,
0,
|sublist(zs, ys)| |xs| + |ysi,
lapp(xs, ys, zs)| min (|xs|, |zs|),
[1ist(xs)] = |xs]

|sequence(xs)|

I

Il

Krzysztof R. Apt 67

and (as before) any model I of SEQUENCE-T such that for a ground s
I |= sequence(s) iff s is a list of 27 elements.

Again, in the above level mapping it was possible to disregard the accumu-
lated use of “+1” ’s.

This approach was further generalized in Apt and Pedreschi [9] to a
yield a modular method of proving left termination. It was applied there
to a number of non-trivial examples including the MAP_COLOR program from
Sterling and Shapiro [36] (see page 212) which generates a colouring of a
map in such a way that no two neighbours have the same colour.

It should be made clear here that due to Theorems 3.3 and 3.4 it is
undecidable whether a program is acceptable. Starting with Ullman and
Van Gelder [38] a lot of attention has been devoted to a study of sufficient,
decidable conditions for proving left termination, or more generally, left
termination of a given query and a program. An interested reader is referred
to the recent survey article of De Schreye and Decorte [32] and the last
section of this chapter.

3.2 Partial Correctness

Our approach to partial correctness is based on the use of the least Her-
brand model Mp. We restrict our attention to left terminating programs.
This explains why we treated termination first. The following observation
of Apt and Pedreschi [8] explains why for a left terminating program it is
easier to verify that a Herbrand interpretation is its least Herbrand model.

Definition 3.10 We say that a model I of a program P is supported
if for every ground atom A such that I |= A there exists B such that
A« B € ground(P) and I = B. O

Intuitively, B is an explanation (or support) for the truth of A in I.

Lemma 3.11 For a left terminating program P, Mp is the unique sup-
ported Herbrand model of P. a

Now, for all programs considered here, and for plenty of other “cor-
rectly typed” programs, checking that a given Herbrand interpretation is a
supported model is straightforward. Consequently, by virtue of the above
lemma, for a left terminating program, we omit the proof that a given
Herbrand interpretation is its least Herbrand model.

Of course, it is legimitate to ask how one finds a candidate for the
least Herbrand model. According to our experience it is usually the “spec-
ification” of the program limited to ground queries. We do not consider
here the problem of in what language it is most convenient to write this
specification.

In the sequel it will be more convenient to work with the instances of
the queries instead of with the substitutions. More precisely, we introduce
the following definition.

68 Program Verification and Prolog

Definition 3.12 Consider a program P.

o We say that Q' is a correct instance of the query Q, if for some
correct answer substitution 0 for Q, Q' = QO8; that is , if Q' is an
instance of Q and P = Q'.

o We say that Q' is a computed instance of the query Q if for some
computed answer substitution 6 for Q, Q' = Q6. O

Clearly, a unique correct (resp. computed) answer substitution can be
computed from a query and its correct (resp. computed) instance in a
straightforward way. So considering instances instead of substitutions is
just a matter of convenience. Using this terminology the usual soundness
and strong completeness properties of logic programs, now restricted to the
leftmost selection rule, can be formulated as follows.

Theorem 3.13 (Soundness of LD-resolution) Consider a program P
and a query Q. Every computed instance of Q) is a correct instance of Q.
a

Theorem 3.14 (Strong Completeness of LD-resolution) Consider
a program P and a query Q. For every correct instance Q' of Q there exists
a computed instance Q" of Q such that Q" < Q'. O

Let us now introduce the following notation. For a program P, a query
Q@ and a set of queries Q, we write

{Q} P Q

to denote the fact that Q is the set of computed instances of Q. {Q} P Q
should be read as: “the program P transforms @ into the set of its com-
puted instances Q”. In particular, when Q is a singleton, say Q@ = {Q'},
we have {Q} P {Q'} which not accidentally coincides with the syntax of
correctness formulas in Hoare style approach to verification of imperative
programs (see, e.g., Apt and Olderog [11]). We now present an easy method
of establishing constructs of the form {Q} P Q.

Theorem 3.15 Consider a program P and a query Q. Suppose that the
set Q of ground correct instances of Q) is finite. Then

{Q} P Q.
Proof. First note that

every correct instance Q' of Q is ground. (3.1)

Indeed, otherwise, by the fact that the Herbrand universe is infinite, the
set @ would be infinite.

Consider now @1 € Q. By the Strong Completeness Theorem 3.14,
there exists a computed instance Q2 of @ such that Q, < Q;. By the

Krzysztof R. Apt 69

Soundness Theorem 3.13, Q2 is a correct instance of @, so by (3.1) Q2 is

ground. Consequently Q2 = @1, that is Q1 is a computed instance of Q.
Conversely, take a computed instance Q; of Q. By the Soundness The-
orem 3.13, Q1 is a correct instance of Q. By (3.1) @, is ground, so Q; € Q.
O

For a query consisting of just one atom A the set of its ground correct
instances equals [A] N Mp, so the assumption of the above theorem can
be rephrased as “the set [A] N Mp is finite”. This simplifies checking its
validity and explains the relevance of M p in our approach. As the examples
below indicate, the above theorem is quite useful.

Append
First consider the APPEND-T program and three of its uses.

(i) Given ground lists s,t,u we have
app(s,t,u) € Myppeyp_7 iff s*t = u.
Consequently
e when s*t = u,
{app(s,t,u)} APPEND — T {app(s,t,u)};

e when s*t # u,
{app(s, t,u)} APPEND — T §.

(ii) Given ground lists s,t, the set [app(s,t,Zs)] N MppENp_T consists of
just one element: app(s,t,s*t). Thus

{app(s,t,Zs)} APPEND — T {app(s,t,s*1t)}.
(iii) Finally, given a ground list u, we have
[app(Xs, Ys,u)] " Mpppenp_T = {app(s,t,u) | s,t are g. lists, s xt = u}.
But each list can be split only in finitely many ways, so the set
[app(Xs, Ys,u)] N MpppEND-T
is finite. Thus

{app(Xs, Ys,u)} APPEND — T {app(s,t,u)| s,t are g. lists, s x t = u}.

70 Program Verification and Prolog

Palindrome
A slightly less trivial example is the PALINDROME-T program. Given a
list s, let rev(s) denote its reverse. It is easy to check that

Mppr1nDROME-T = {palindrome(s)|s isa g. list, rev(s) = s}
U {reverse(s,t)|s,t are g. lists, rev(s) = t}
U {reverse(s,t,u)| s,t,uare glists, rev(s)*t = u}
U Mpist,
by noting that for lists x1s, x2s
rev([x|x1s]) *x x2s = rev(x1s) * [x|x2s].
Thus for a ground list s
e when rev(s) = s,
{palindrome(s)} PALINDROME — T {palindrome(s)};
e when rev(s) # s,
{palindrome(s)} PALINDROME — T §.

Moreover, for a ground list s, [reverse(s,Ys)] N MppLINDROME-T =
{reverse(s, rev(s))}, so

{reverse(s,Ys)} PALINDROME — T {reverse(s,rev(s))}.

Sequence

Finally, consider the SEQUENCE-T program. Call a list of 27 numbers
satisfying the description of the sequence a desired list. We leave it to the
reader to check that

MSEQUENCE-T = MAPPEND-T
{sublist(s,t)|s,t are g. lists, s is a sublist of t}

{sequence(s) | s is a g. list of length 27}

c C C

{question(s) | s is a desired list}.

Thus [question(Ss)]|NMgEquENCE-T = {question(s) | s is a desired list}.
But the number of desired lists is obviously finite (in fact, as we noted, there
are 6 of them). Consequently,

{question(Ss)} SEQUENCE — T {question(s) | s is a desired list}.

Krzysztof R. Apt 71

Clearly, the above approach to partial correctness cannot be used to
reason about queries with “non-ground inputs” (or more precisely about
queries with non-ground computed instances), like app(s,t,Zs) where s,t
are non-ground lists, since [app(s, t, Zs)|N MpppgNp_T is infinite. Recently,
Apt and Gabbrielli [6] proposed a modification of the above method which
allows us to deal properly with such queries.

3.3 Occur-check Freedom
In this section we study the occur-check problem.
3.3.1 Occur-check Free Programs

To define this problem we need to recall the unification algorithm due to
Martelli and Montanari [26]. Two atoms can unify only if they have the
same relation symbol. With two atoms p(s1,...,8n) and p(t,...,tn) to be
unified we associate the set of equations

{51 = tl,..., Sp = tn}

In the sequel we often refer to this set as p(sy, ..., sn) = p(t1,...,tn). The al-
gorithm operates on such finite sets of equations. We use below the notions
of sets and of systems of equations interchangeably. A substitution 6 such
that 510 = t10,...,5,0 = t,0 is called a unifier of {s1 =t1,...,8n =tn}.
Thus the set of equations {s; = t1, ..., $n = t,} has the same unifiers as the
atoms p(s1,---, 8n) and p(ty, ..., tpn).

Two sets of equations are called eguivalent if they have the same set
of unifiers, and a set of equations is called solved if it is of the form
{z1 =t1,...,Zn = t,}, where the z;’s are distinct variables and none of
them occurs in a term t;. If E = {x; =1t;,...,zn = t,} is solved, then we
call {z1/t1,...,%n/tn} the unifier determined by E.

To find a most general unifier (in short, mgu) of two atoms it suffices
to transform the associated set of equations into an equivalent one which
is solved. The following algorithm does it if this is possible and otherwise
halts with failure.

MARTELLI-MONTANARI ALGORITHM

Nondeterministically choose from the set of equations an equation of a form
below and perform the associated action:

(1) f(s15-058n) = f(t1, s tn) replace it by the equations
8§ = tl, vy Sp = tn,

(2) f(s1y--y8n) = g(t1, ..., tm) Where f # g halt with failure,
3) z==z delete 1t,

4) t = = where t is not a variable replace it by x =t
D)

72 Program Verification and Prolog

(5) = =1t where z # t, does not occur perform the substitution {x/t}
in ¢ and z occurs elsewhere in every other equation,

(6) z =1t where z #¢ and z occursin t halt with fatlure.

The algorithm terminates when no action can be performed or when
failure arises. The following theorem holds (see Martelli and Montanari
[26)).

Theorem 3.16 (Unification) The Martelli-Montanar: algorithm always
terminates. If the original set of equations E has a unifier, then the algo-
rithm successfully terminates and produces a solved set of equations deter-
mining an mgu of E, and otherwise it terminates with failure. O

The test “z does not occur in ¢” in action (5) is called the occur-
check and in most Prolog implementations omitted for reasons of effi-
ciency. By omitting the occur-check in (5) and deleting action (6) from
the Martelli-Montanari algorithm we are still left with two options de-
pending on whether the substitution {z/t} is performed in ¢ itself. If it is,
then divergence can result, because z occurs in t implies that z occurs in
t{z/t}. If it is not, then an incorrect result can be produced, as in the case
of the single equation z = f(z) which yields the substitution {z/f(z)}. So
in both cases the omission of the occur-check leads to complications. They
are usually termed as the occur-check problem.

To deal with the occur-check problem we propose simple syntactic con-
ditions which allow us to prove that for a given pure Prolog program and
a query the occur-check can be safely omitted. To formally define this
property we introduce the following notions.

Definition 3.17

o A set of equations E is called not subject to occur-check (NSTO in
short) if in no erecution of the Martelli-Montanari algorithm started
with E action (6) can be performed.

o Let & be an LD-derivation. Let A be an atom selected in £ and H the
head of the input clause selected to resolve A in £. Suppose that A
and H have the same relation symbol. Then we say that the system
A = H is considered in €.

e Suppose that all systems of equations considered in the LD-derivations
of PU{Q} are NSTO. Then we say that PU{Q} is occur-check free.

a

The concept of an NSTO set of equations is due to Deransart, Ferrand
and Téguia [19] who studied the conditions under which the occur-check
can be safely omitted independently of the selection rule and of the chosen
resolution strategy . Note that for an NSTO set of equations it is irrelevant
for the purposes of unification whether the occur-check is omitted from the
Martelli-Montanari algorithm.

Krzysztof R. Apt 73

The above definition assumes a specific unification algorithm but al-
lows us to derive precise results. Moreover, the nondeterminism built into
the Martelli-Montanari algorithm allows us to model executions of various
other unification algorithms. In contrast, no specific unification algorithm
in the definition of the LD-derivation is assumed.

Since in the definition of the occur-check freedom all LD-derivations of
PU{Q} are considered, all systems of equations that can be considered in
a possibly backtracking Prolog execution of a query Q w.r.t. the program
P are taken into account.

We now present the approach of Apt and Pellegrini [10] for proving
occur-check freedom. To this end we need some preparatory definitions.
One of them is the notion of a mode.

3.3.2 Well-moded Queries and Programs

Intuitively, modes indicate how the arguments of a relation should be used.
They were first considered in Mellish [29], and more extensively studied in
Reddy [31] and Dembinski and Maluszynski [18].

Definition 3.18 Consider an n-ary relation symbol p. By a mode for p
we mean a function m, from {1,...,n} to the set {+,—}. If my(3) = “+7,
we call i an input position of p, and if mp(i) = “~7, we call i an output
position of p (both w.r.t. m,). By a moding we mean a collection of modes,
each for a different relation symbol. O

We write m,, in a more suggestive form p(m,(1),...,my(n)). For exam-
ple, member (-,+) denotes a binary relation symbol member with the first
position moded as output and the second position moded as input.

The definition of moding assumes one mode per relation symbol in a
program. Multiple modes may be obtained by simply renaming the rela-
tions. In the remainder of this section we assume that every considered
relation symbol has a fixed mode associated with it. This assumption will
allow us to talk about input positions and output positions of an atom.

We now introduce a restriction which constrains the “flow of data”
through the query and through the clauses of the programs. To simplify
the notation, when writing an atom as p(u, v), we now assume that uis a
sequence of terms filling in the input positions of p and v is a sequence of
terms filling in the output positions of p.

Definition 3.19
e A query pi(s1,t1),--- Pn(sn,tn) is called well-moded if for i € [1,n]

i1
Var(s;) C U Var(tj).
j=1

o A clause
pO(t075n+1) "Pl(slat1)7-~-,Pn(Sn,tn)

74 Program Verification and Prolog

is called well-moded if for i € [1,n + 1]

i—1

Var(s;) C U Var(tj).
3=0

e A program is called well-moded if every clause of it is. a

In particular, an atomic query p(s,t) is well-moded if Var(s) = 0, and a
unit clause p(s,t) «+ is well-moded if Var(t) C Var(s).
Thus, a query is well-moded if

e every variable occurring in an input position of an atom (¢ € [1,n])
occurs in an output position of an earlier (5 € [1,¢ — 1]) atom.

And a clause is well-moded if

e (¢ € [1,n]) every variable occurring in an input position of a body
atom occurs either in an input position of the head (j = 0), or in an
output position of an earlier (j € [1,7 — 1]) body atom,

e (i = n + 1) every variable occurring in an output position of the
head occurs in an input position of the head (§ = 0), or in an output
position of a body atom (j € [1,n]).

Finally, we introduce the notion of linearity.

Definition 3.20
o A family of terms is called linear if every variable occurs at most once
wn et.
o An atom is called input (resp. output) linear if the family of terms
occurring in its input (resp. output) positions is linear. O
Thus a family of terms is linear iff no variable has two distinct occur-
rences in any term and no two terms have a variable in common.
We now state a result allowing us to conclude that P U {Q} is occur-

check free. As we shall see, it can be easily applied to various pure Prolog
programs.

Theorem 3.21 Let P and Q be well-moded. Suppose that
o the head of every clause of P is output linear.
Then P U{Q} is occur-check free. a

Let us see now how this theorem can be applied to the programs con-
sidered in the previous sections.

Append

First, consider the program APPEND with the mode app(+,+,-). It is
easy to check that in this mode APPEND is well-moded and the head of
every clause is output linear. By Theorem 3.21 we conclude that for s and
t ground, APPEND U {app(s, t, u)} is occur-check free.

Krzysztof R. Apt 75

Append, again

Also in the mode app(-,-,+) APPEND is well-moded and the head of
every clause is output linear. Theorem 3.21 applies and yields that for u
ground, APPEND U {app(s, t, u)} is occur-check free.

Palindrome

Finally, consider the program PALINDROME-T. We mode it as follows:
palindrome(+), reverse(+,-), reverse(+,+,-), list(+). Clearly, the
program PALINDROME-T is then well-moded and the heads of all clauses
are output linear, so by Theorem 3.21 for s ground, PALINDROME-T U
{palindrome(s)} is occur-check free.

3.3.3 Nicely Moded Programs

The above conclusions are still of a restrictive kind, because in each case we
had to assume that the input positions of the one atom queries are ground.
Moreover, Theorem 3.21 cannot be used to establish that SEQUENCE-T U
{question(Ss)} is occur-check free. Indeed, there is no way to mode this
program and query so that both of them are well-moded.

To see this, first note that to get the query question(Ss) well-moded
we have to use the mode question(-). This implies that to get the
clause defining the question relation well-moded, we have to use the
mode sequence(-). But then we cannot satisfy the requirement of well-
modedness for the unit clause defining the sequence relation.

To deal with these difficulties we introduce the following notion due to
Chadha and Plaisted {15] (and independently, though later, rediscovered
in Apt and Pellegrini [10}).

Definition 3.22
o A querypi(sy.ty),...,pa(sn, tn) is called nicely moded ifty,... tn
is a linear family of terms and for i € [1,n]

Var(sy) 0 (| Var(t;)) = 6.

j=i
o A clause
pol(sg.tg) — pi(s1.t1),- ... pnu(sn,tn)
ts called nicely moded if p1(sy,t1)....,pPn(Sn. tn) is nicely moded and

n
Var(sg) n (| J Var(t;)) = 0.
3=1
In particular, every unit clause is nicely moded.
o A program is called nicely moded if every clause of it is.]

Thus, assuming that in every atom the input positions occur first, a
query is nicely moded if

76 Program Verification and Prolog

e every variable occurring in an output position of an atom does not
occur earlier in the query.

And a clause is nicely moded if

e every variable occurring in an output position of a body atom occurs
neither earlier in the body nor in an input position of the head.

So, intuitively, the concept of being nicely moded prevents a “specu-
lative binding” of the variables which occur in output positions — these
variables are required to be “fresh”. The following result of Apt and Pel-
legrini [10] and Chadha and Plaisted [15] clarifies the importance of this
notion.

Theorem 3.23 Let P and Q) be nicely moded. Suppose that
o the head of every clause of P is input linear.
Then P U {Q} is occur-check free. 0

Let us see now how this theorem can be applied to the previously studied
programs.

Append

Consider again the program APPEND with the moding app (+,+,-). Then
APPEND is nicely moded and the head of every clause is input linear. By
Theorem 3.23 we conclude that when u is linear and Var(s, t)N Var(u) = @,
APPEND U { app(s, t, u)} is occur-check free.

Append, again

With the moding app(-,-,+) APPEND is nicely moded as well, and the
head of every clause is input linear. Again, by Theorem 3.23 we conclude
that when s,t is a linear family of terms and Var(s,t) N Var(u) = 0,
APPEND U { app(s, t, u)} is occur-check free.

Sequence

Reconsider now the program SEQUENCE-T. To be able to apply Theorem
3.23 we mode it as follows: sublist(-,+), sequence(+), question(+),
app(-,-,+), list(+). Thanks to the use of anonymous variables it is easy
to check that then SEQUENCE-T is indeed nicely moded and that the heads
of all clauses are input linear. By Theorem 3.23 we now get that when t
is linear (and so, for example, a variable), SEQUENCE-T U {question(t)} is
occur-check free.

Palindrome

So far it seems that Theorem 3.23 allows us to draw more useful conclu-
sions than Theorem 3.21. However, reconsider the program PALINDROME-T.
In Chadha and Plaisted [15] it is shown that no moding exists such that
PALINDROME-T is nicely moded and the heads of all clauses are input linear.

Krzysztof R. Apt 77

Thus Theorem 3.23 cannot be applied to this program whereas Theorem
3.21 was applicable.

The last two examples thus show that each of these theorems is appli-
cable to different classes of programs.

4 Pure Prolog with Arithmetic

We now move on to the study of the second subset of Prolog, pure Prolog
with arithmetic. The previous approach to termination can be readily
applied to this subset — it suffices to use level mappings which assign to
ground atoms with arithmetic relations the value 0.

However, some caution has to be exercised. While the base for our
approach to termination, Theorem 3.3, remains valid for pure Prolog pro-
grams with arithmetic (in fact, the same proof carries through), Theorem
3.4 does not hold anymore. Indeed, consider the program with only one
clause: p— z < y,p. Because the LD-derivations which end in an error
are finite, the above program is left terminating. However, it is easy to see
that it is not acceptable — just consider the ground instance p+— 1< 2,p
and recall from Section 2.2 that the clause 1 < 2 is added to the program,
so it is true in every model of it. (In contrast, the program consisting of the
clause p «— = < z,p 2s acceptable.) This shows that the proposed method
of proving termination is somewhat less general in the case of programs
with arithmetic.

We refer to Apt and Pedreschi [8] for a proof that QUICKSORT is left ter-
minating and that for alist s all LD-derivations of QUICKSORT U {qs(s, Ys)}
are finite.

The subject of partial correctness is considered after studying the issue
of errors.

4.1 Absence of Run-time Errors

To prove absence of errors we use types. We found it convenient to use
here an approach recently proposed by Bronsard, Lakshman and Reddy
[14] which from the semantic point of view coincides with the method of
Bossi and Cocco [13] for proving partial correctness. In our presentation
we abstract from the concrete syntax introduced in these papers. Bossi
and Cocco [13] use first-order language and concentrate on proofs of par-
tial correctness, whereas Bronsard, Lakshman and Reddy [14] introduce a
language which allows us to express in a concise way recursive and poly-
morphic types which involve incomplete data structures. The idea is to
associate with each relation symbol two types: a pre-type and a post-type.

We call an atom a p-atom if its relation symbol is p. Recall from Section
3.1 that we denoted by rel(A) the relation symbol occurring in atom A.
So an atom A is a rel(A)-atom.

The following very general definition of a type is sufficient for our pur-

78 Program Verification and Prolog

poses.
Definition 4.1 Consider a relation symbol p.

o A type for p is a set of p-atoms closed under substitution.

o A type is a type for a relation symbol p.

o A directional type for p is a pair pre,, post, of types for p. We call
pre, (resp. posty) a pre-type (resp. a post-type) associated with p. O

Below we shall often use certain sets of terms in the consider universal

language:

T — the set of all terms,

List — the set of lists,

Gae — the set of of gae’s,

ListGae — the set of lists of gae’s.

In what follows we write a directional type for a relation symbol p

in a more suggestive form used in Pedreschi [30], another recent work on
directional types:

p:S—>T,
where pre, = {p(s) | s € S} and post, = {p(t) | t € T'}. For example ,
app : (List x List x T)U (T x T x List) — List x List x List

is a directional type for a ternary relation symbol app.

In the remainder of this section we assume that every considered relation
symbol has a fixed directional type associated with it. This assumption will
allow us to talk about pre- and post-types of a relation symbol.

Definition 4.2 Given atoms Ay,...,An, Any1 and types T, ..., T, T,
where n > 0, we write

t=A1 eh,.., A, €T, = An+1 € Tn+1

to denote the fact that for all substitutions 6, if A16 € Ty,...,4,0 € T,
then An+19 € Tn+1. 0O

We now abbreviate A € pre,(4) to pre(A) and analogously for post.

Definition 4.3
e A query Ay, ..., A, is called well-typed if for j € [1,n]

= post(A1), ..., post(4j-1) = pre(4;).

o A clause H « By, ..., By, is called well-typed if
for j € [1,n+1]

= pre(H), post(B1), ..., post(Bj-1) = pre(B;),
where pre(Bny1) := post(H).

Krzysztof R. Apt 79

o A program is called well-typed if every clause of it is. o
In particular, an atomic query A is well-typed if |= pre(4), and a unit
clause A + is well-typed if |= pre(A4) = post(A).

The following property of the notion of being well-typed holds (essen-
tially, see Bossi and Cocco [13] or an account of it in Apt and Marchiori

[7)-

Lemma 4.4 (Persistence) An LD-resolvent of a well-typed query, and
a well-typed clause that is variable disjoint with it, is well-typed. O

This brings us to the following important conclusion.

Corollary 4.5 Let P and @ be well-typed, and let ¢ be an LD-derivation
of PU{Q}. Then k= pre(A) for every atom A selected in &.

Proof. A variant of a well-typed clause is well-typed and for a well-typed
query Aj, ..., A, we have |= pre(4;). O

In the sequel, we say that an atom A satisfies its precondition if =
pre(A).

Quicksort
To see the usefulness of this corollary let us return to the QUICKSORT
program. To prove absence of run-time errors we start by typing the rela-
tion gs in a way reflecting the following statement: when the first argument
is a list of gae’s, upon successful termination the second argument is a list
a gea’s, so:
qs : ListGae x T — T x ListGae,

and the built-in’s > and < in such a way that the above corollary can be
applied, so:

>:Gaex Gae—T x T,

and
<:Gaex Gae—T xT.

We now complete the typing in such a way that QUICKSORT is well-typed:
part : Gae X ListGae x T x T — T x T x ListGae x ListGae,

app: 7T x ListGae x T — T x ListGae x T.
It is worthwhile to note that a trivial directional type, namely

app: T XT xT =T xT xT

80 Program Verification and Prolog

is sufficient here. The reason for using the above directional type will
become clear in Section 6.1.

Assume now that s is a list of gae’s. By Corollary 4.5 we conclude that
all atoms selected in the LD-derivations of QUICKSORT U {qs(s, t)} satisfy
their preconditions. In particular, when these atoms are of the formu > v
oru < v, both u and u are gae’s. Thus the LD-derivations of QUICKSORT
U {gs(s,t)} do not end in an error.

Length
The following program LENGTH uses another arithmetic relation, is:

length(Xs, N) <« N is the length of the list Xs.
length([. | Ts], N) <« 1length(Ts, M), N is M+1.
length([], 0).

To prove absence of run-time errors we use the following types:
length: 7T x T — T X Gae,
is: 7 X Gae— Gae x T.

It is easy to check that LENGTH is then well-typed. Corollary 4.5 now
yields that for arbitrary terms s, t, all atoms selected in the LD-derivations
of LENGTH U {length(s,t)} satisfy their preconditions. In particular, when
these atoms are of the form u is v, v is a gae. So the LD-derivations of
LENGTH U {length(s,t)} do not end in an error.

4.2 Partial Correctness

When dealing with partial correctness of programs that use arithmetic re-
lations we need to remember (see Section 2.2) that to each program we
added infinitely many clauses which define the used arithmetic relations.
Both the Soundess Theorem 3.13 and the Strong Completeness Theorem
3.14 remain valid for programs with infinitely many clauses; however, com-
pleteness does not hold any more in the presence of arithmetic relations.
Indeed, we have P |= X < Y{X/1,Y/2} for any program P that uses <,
whereas the LD-derivations of P U {X < Y} end in an error. Also Theorem
3.15 does not hold then, as the query X < 2 shows. Still, the following
version of this theorem can be used for proofs of partial correctness.

Theorem 4.6 Consider a program P and a query Q. Assume that the
LD-deriwations of P U {Q} do not end in error. Suppose that the set Q of
ground correct instances of Q) is finite. Then

{Q} P Q.

Proof. Under the assumptions of the theorem both the Soundness Theorem
3.13 and the Strong Completeness Theorem 3.14 remain valid. For the
completeness theorem this is not obvious, since it usually relies on the

Krzysztof R. Apt 81

Lifting Lemma which does not hold now. Indeed, the query 1 < 2 admits a
successful LD-derivation, whereas all the LD-derivations of its more general
version X < Y end in an error. However, the admirably short and elegant
proof of Stark [35] does not use the Lifting Lemma and carries through.
Consequently, the proof of Theorem 3.15 carries through as well. O

Quicksort

To apply this theorem reconsider the QUICKSORT program. We deal
here with its “correctly typed” version QUICKSORT-T, obtained by using
APPEND-T instead of APPEND and in which the last clause defining the part
relation is replaced by

part(X, [0, [0, [1D « X < X.

This forces the first argument of part to be a gae. (Without this change
the query qs([s],Ys) would succeed for any s.)

Below we use the following terminology. An element a partitions a list
of gae’s s into 1s, bs if a is a gae, 1s is a list of elements of s which are
< a and bs is a list of elements of s which are > a.

By extending the previously considered typing with

list : ListGae — ListGae

we conclude that for a list of gae’s s the LD-derivations of QUICKSORT-T U
{as(s,Ys)} do not end in an error. Moreover, the above-mentioned proof
of termination of QUICKSORT U {qs(s,Ys)} can be modified in a straight-
forward way to the program QUICKSORT-T.

We leave it to the reader to check that

MQUICKSORT-T = MpppEND-TU M> U M<

U {part(a,s,1s,bs)]| s, 1s,bs are lists of gae’s,
a partitions s into 1s, bs}

U {as(s,t) | s,t are lists of gae’s and
t is a sorted permutation of s}.

So for a list of gae’s s the set [qs(s, Ys)]|NMquTcKSORT-T consists of just
one element: gs(s,t), where t is a sorted permutation of s. Consequently,
by Theorem 4.6,

{qs(s,Ys)} QUICKSORT — T {gs(s,t)}.

82 Program Verification and Prolog

Length
In contrast, the LENGTH program can be directly handled without any
modification. It is easy to check that

MreneTH = M;s
U {length(s,|s])|sis ag. list}.

(Recall, that for a list s, Is| is its length.) Such a check involves the use
of Lemma. 3.11 which is applicable here, since the program LENGTH is easily
seen to be acceptable, and so left terminating. So for a ground list s the
set [length(s, N)]N M gygTH consists of just one element: length(s, |sl).
By Theorem 4.6,

{length(s,N)} LENGTH {length(s,|s|)}.

Note that the proof of the above claim for a non-ground list s breaks
down because the set [length(s,N)] N MpgygTy is then infinite.

4.3 Occur-check Freedom

Finally, we deal with the issue of the occur-check. The approach of Sec-
tion 3.3 is applicable to pure Prolog programs with arithmetic without any
modification. The reason is that the unit clauses which define the arith-
metic relations are all ground, so they automatically satisfy the conditions
of Theorems 3.21 and 3.23. To see how these results apply here reconsider
the two running examples of this section.

Quicksort

Consider QUICKSORT with the moding gs(+,-), partition(+,+,-,-),
app(+,+,-), >(+, +), <(+, +). QUICKSORT is then well-moded and the
heads of all clauses are output linear. Theorem 3.21 applies and yields that
for s ground, QUICKSORT U {gs(s, t)} is occur-check free.

Moreover, in this moding QUICKSORT is also nicely moded and the head
of every clause is input linear. Thus Theorem 3.23 applies as well, and
yields that when t is linear and Var(s) N Var(t) = @, QUICKSORT U {
gs(s, t)} is occur-check free.

Length

Next, consider the LENGTH program with the moding length(+,-),
is(-,+). Then LENGTH is well-moded and the heads of all clauses are
output linear. By Theorem 3.21 for s ground, LENGTH U {length(s, t)}
is occur-check free.

Moreover, in this moding LENGTH is also nicely moded and the head
of every clause is input linear. Thus Theorem 3.23 applies here as well,
and yields that when t is linear and Var(s) N Var(t) = 0, LENGTH U {
length(s, t)} is occur-check free. In particular, this conclusion holds for
any list s and a variable N not appearing in s.

Krzysztof R. Apt 83

It is well-known that programs with difference-lists easily lead to com-
plications in absence of the occur-check. For example, the program empty

empty (L \ L).

when executed with the goal «— empty([a | X1 \ X) leads to the con-
sideration of the system { [a | X] = L, X = L } which is subject to the
occur-check. It is worthwhile to note that programs which use difference-
lists can be handled by the methods proposed. For example, Theorem 3.23
immediately implies that for s and t linear and variable disjoint, empty U
{empty (s, t)} is occur-check free.

However, more complex programs with difference lists like quicksort.dl
(program 15.4 on page 244 in Sterling and Shapiro [36]) cannot be handled
by the approach discussed here. In Apt and Pellegrini [10] a refinement of
this approach is proposed which can be used to deal with such programs.

Of course, there exist programs whose executions for a natural class of
queries do result in the occur-check problem. An example is the program
that formalizes Curry’s system of type assignment for the typed lambda
calculus. For such a program and queries a transformation is proposed
in Apt and Pellegrini [10] which transforms a program and a query into
a program and a query for which only the calls to the built-in unification
relation need to be resolved by a unification algorithm with the occur-check.

5 Pure Prolog with Negation

Finally, we deal with the third subset of Prolog, pure Prolog with negation.
We call programs written in this subset general programs. Our approach
to proving termination and partial correctness of general programs is ap-
plicable only under the assumption that floundering does not arise. So we
have to deal with this issue first.

5.1 Absence of Floundering

To prove absence of floundering we generalize the notion of a well-moded
program (Definition 3.19) to general programs. To this end we simply
allow the negation symbol — to occur in front of atoms in queries and
clause bodies. More precisely, we introduce the following definition, where
©® stands for = or for the empty string.
Definition 5.1

o A general query Op1(s1,t1),--., OPn(sn, tn) is called well-moded if

for i € [1,n]

t—1
Var(s;) C U Var(tj).
=1
o A general clause

pO(th Sn+1) A QPI(Sl’tl)v .-+, Opn(sn, tn)

84 Program Verification and Prolog

is called well-moded if for i € [1,n + 1]

i—1

Var(s;) C U Va'r(tj).

=0

e A general program is called well-moded if every general clause of it
18. O

This definition will be useful later.

Definition 5.2 A general program is called non-floundering if no LDNF-
derivation starting in a ground general query flounders. O

The following result is due to Apt and Pellegrini [10] and, independently,
Stroetman [37].

Theorem 5.3 Consider a well-moded general program P and a well-
moded general query Q. Suppose that all relations used in negative literals
of P and Q are moded completely input. Then PU{Q} does not flounder.
In particular, P is non-floundering. O

To see the use of this theorem we now consider two general programs
which deal with directed graphs. A directed graph is represented here as
a (ground) list of its edges. In turn, an edge from node a to node b is
represented by the list [a, d].

Transitive Closure
The first general program, called TRANS-T, computes the transitive clo-
sure of a directed graph:

trans(X, Y, E, Avoids) « 1list(Avoids), member([X, Y], E).
trans(X, Z, E, Avoids) «

member ([X, Y], E),

~ member (Y, Avoids),

trans(Y, Z, E, [Y | Avoids]).

member (Element, List) +« Element is an element of the list List.
member (X, [Y | Xs]) <« member(X, Xs).
member (X, [X | Xs]) « 1list(Xs).

augmented by the LIST program.

In a typical use of this program in order to check that [x,y] is in the
transitive closure of the directed graph e, one evaluates the query trans(x,
vy, e, [x1).

With the moding trans(-,-,+,+), list(+), member(+,+) for the
occurrence of member in the negative literal = member(Y, Avoids), and
member (-,+) for the other occurrences of member, TRANS-T is well-moded.
By Theorem 5.3, for e,s ground, TRANS-T U {trans(a, b, e, s)} does
not flounder. Moreover, TRANS-T is non-floundering.

Krzysztof R. Apt 85

Dag

Consider now the problem of testing whether a graph is a dag. Recall
that dag is the abbreviation for “directed acyclic graph™ and that a directed
graph is acyclic if no path in it exists which forms a cycle. The solution
is exceptionally simple, though not very eflicient - we add to the general
program TRANS-T the general clauses

acyclic(E) « - cyclic(E).

cyclic(E) « trams(X, X, E, [1).

Call the resulting general program DAG-T.

We now extend the above moding by cyclic(+), acyclic(+). It is
straightforward to check that DAG-T is then well-moded. Thus, by Theorem
5.3, for e ground, DAG-T U {acyclic(e)} does not flounder. Moreover,
DAG-T is non-floundering.

5.2 Termination

To deal with termination we use the approach of Apt and Pedreschi [8]
which generalizes the method of Section 3.1 to general programs.

Definition 5.4 A general program is called left terminating if all its
LDNF-derivations starting with a ground query are finite. O

Given a general program P, we now define its “negative part” P~.
Definition 5.5 Let P be a general program and p, q relations.
o p refers to q iff a general clause in P uses p in its head and g in its
body.
o p depends on g is the reflezive, transitive closure of refers to.
e Negp is the set of relations which are used i a negative literal in P.
o Negp is the set of relations on which the relations in Negp depend.
e P~ is the set of general clauses in P in whose head a relation from
Negp is used. [}
Recall now from Lloyd [25] and Apt [2] that comp(P) stands for Clark’s
completion of a general program P.

Definition 5.6
o Given a level mapping | |, we extend it to ground negative literals by
putting {—~A| = |A]. ~A is bounded with respect to | | if A is.
o A general clause is called acceptable with respect to || and an interpre-
tation I, if I is its model and for every ground instance A — K, L, M
of it such that I = K
1Al > |L].

o A general program P is called acceptable with respect to || and I, if
every general clause of it is and if the restriction of I to the relation
symbols from Negp is a model of comp(P™). O

36 Program Verification and Prolog

The following result relates these notions.

Theorem 5.7 Let P be a general program acceptable w.r.t. | | and I.
Then for every liteval L bounded w.r.t. || all LDNF-derivations of PU{L}
are finite. In particular, P 1s left terminating. 0

So to apply the notion of acceptability we need a method for proving
that an interpretation I is a model of comp{P). For Herbrand interpre-
tations the following observation due to Apt, Blair and Walker [4] comes
to our rescne. The notion of a supported model is now extended to general
programs in an obvious way.

Note 5.8 A Herbrand interpretation I is @ model of comp(P) iff it is a
supported model of P. O

The following result shows that the restriction to Herbrand models does
not result in a limitation of the method.

Theorem 5.9 Let P be a left terminating, non-floundering general pro-
gram. Then, for some level mapping | | and @ Herbrand interpretation
I,

{i) P is acceptable w.r.t. || and I,

(1i) for every literal L all LDNF-derivations of P U{L} are finite iff L is
bounded w.r.t. | |.]

Apt and Pedreschi [8] showed that TRANS-T is acceptable w.r.t. a level
mapping | | such that |[trans{a,b,e,s)| is a function of e and s, and a
Herbrand interpretation I. Thus for e,s ground all LDNF-derivations of
TRANS-T U {trans(a, b, e, s)} are finite. In particular, TRANS-T is left
terminating.

By extending this level mapping to DAG-T with

lacyclic(e)] = |cyclic(e)]+ 1,
lcyclic(e)] = |trans(a,a,e,[])]+ 1,
where a is a constant, and modifying I appropriately, we also conclude that

for e ground all LDNF-derivations of DAG~-T U {acyclic(e)} are finite and
that DAG-T is left terminating.

5.3 Partial Correctness

Our approach to partial correctness of general programs is applicable only
to general programs which are left terminating and non-floundering. The
following result of Apt and Pedreschi [8] is crucial.

Theorem 5.10 Consider a left terminating, non-floundering general pro-
gram P. Then,

(i) P hes @ unique supported Herbrand model, Mp,

Krzysztof R. Apt 87

(i) Mp is a model of comp(P),
(i11) for a ground general query Q such that P U {Q} does not flounder,

Mp = Q iff there ezists a successful LDNF-derivation of P U {Q}.
O

We now need to revise Definition 3.12.

Definition 5.11 Consider a general program P and a general query Q.
We say that Q' is a correct instance of Q, if Q' is an instance of Q) and
comp(P) = Q'.]

The definition of a computed instance refers now to the LDNF-resolution.
The following soundness and completeness results are of help.

Theorem 5.12 (Soundness of LDNF-resolution) Consider a gen-
eral program P and a general query Q. Every computed instance of Q is a
correct instance of Q. !

Theorem 5.13 (Limited Completeness of LDNF-resolution)
Consider a left terminating, non-floundering general program P and a gen-
eral query Q such that P U {Q} does not flounder. For every ground cor-
rect instance Q' of Q there ezists a computed instance Q" of Q such that
QI/ -<_ QI‘

Proof. P U {Q'} does not flounder since P U {Q} does not flounder. By
Theorem 5.10(ii), (iii) there exists a successful LDNF-derivation of PU{Q'}.
P U {Q} does not flounder, so we can lift this derivation to a successful
LDNF-derivation of P U {Q} which yields a computed instance Q" of Q
such that Q" < Q". O

These theorems are needed to establish the following result.

Theorem 5.14 Consider a left terminating, non-floundering general pro-
gram P and a general query Q such that PU{Q} does not flounder. Suppose
that the set Q of ground correct instances of Q) is finite. Then

{Q} P Q.

Proof. The proof is analogous to the proof of Theorem 3.15. So first we
note that

every correct instance Q' of Q is ground. (5.1)

Consider now @; € Q. By the Limited Completeness Theorem 5.13,
there exists a computed instance Q2 of @ such that Q2 < @;. By the
Soundness Theorem 5.12, ()2 is a correct instance of @, so by (5.1) Q2 is
ground. Consequently, Q2 = Q1; that is, QQ; is a computed instance of Q.

Conversely, take a computed instance @1 of Q. By the Soundness The-
orem 5.12, Q)1 is a correct instance of Q. By (5.1) Q; is ground, so @, € Q.

a

88 Program Verification and Prolog

To apply this theorem we need a method to establish the premise “the
set Q of ground correct instances of @ is finite”. As in the case of pure
Prolog programs, we solve this problem by restricting our attention to
the model Mp. Indeed, for an atomic query A the above premise can be
rephrased (thanks to Theorems 5.10 and 5.12) as “the set [A] N Mp is
finite”.

As in the case of pure Prolog programs, it is usually straightforward
to check that a Herbrand interpretation is a supported model of a general
program. So in the examples below we omit the proofs of these facts.

Transitive Closure

We now show how to apply this theorem to the program TRANS-T. In
the previous two subsections we proved that TRANS-T is left terminating
and non-floundering. Adopt the following terminology. Given a list e, a

path in e from a to b is a sequence ay,...,a, (n > 1) such that

- [ai,ai.,_l] ceforie [l,n - 1],

— a1 =a,

—a, =b.
An interior of a path aj,...,a, (n > 1) is the set {as,...,an—1}. A
path aj,...,a, (n > 1) is called acyclic if the elements of its interior
are pairwise different. A path a1,...,an (» > 1) avoids a list s if no

element of its interior is a member of s. In particular, a path consisting of
two elements has an empty interior and consequently is acyclic and avoids
every s.

It is routine to check that

Mrpans-T = MrisT

U {trans(a,b,e,s)|e,s are g. lists,an acyclic path in e
from a to b exists which avoids s}

U {member(a,t)|tisag. listand a2 € t}.

Consider now a directed graph e. We denote its transitive closure by
e*. Then [a,b] € e* iff there exists in e an acyclic path from a to b which
avoids [a]. By Theorem 5.14 we conclude that

e when [a,b] € e*,
{trans(a,b,e,[a])} TRANS — T {trans(a,b,e,[a])};
e when [a,b] ¢ e*,
{trans(a,b,e,[a])} TRANS — T {.

Note that [a] can be replaced here by [] or by [a,b].
Moreover,

{tra.ns(x, Y,e, [])] AMTRANS-T = {trans(a,b, e, []) | [a,b] € e*}7

Krzysztof R. Apt 89

{trans(X,Y,e,[])} TRANS — T {trans(a,b,e,[]) | [a,b] € e*},

since TRANS-T U {trans(X,Y,e,[])} does not flounder. This, in conjunction
with the fact that all LDNF-derivations of TRANS-T U {trans(X,Y,e,[])}
are finite, implies that the query trans(X, Y, e, []) generates all pairs of
elements which form the nodes of the transitive closure e*.

Dag

To deal with the general program DAG-T we extend the above terminol-
ogy. Given a list e, we call e cyclic if for some a a path in e from a to a
exists, and we call e acyclic if it is not cyclic. We leave it to the reader to
check that

Mpag-T = MrRANS-T

U {acyclic(e) | e is a ground acyclic list}
U {cyclic(e) | e is a ground cyclic list}.

Now take a directed graph e. By Theorem 5.14 we conclude that:

e when e is acyclic, {acyclic(e)} DAG — T {acyclic(e)};
e when e is cyclic, {acyclic(e)} DAG —T 0.

5.4 Occur-check Freedom

When considering the notion of the occur-check freedom for general pro-
grams and general queries, we simply reuse the original Definition 3.17 but
now apply it to the LDNF-derivations. In this way, we ignore the selection
of negative literals, but this does not matter as the choice of a negative
literal = A either leads to floundering or to the consideration of the query A
whose selected literal is positive. In both cases no unification is performed.

Further, we reuse the notion of well-moded general programs and gen-
eral queries (Definition 5.1) introduced in Section 5.1. Theorem 3.21 easily
generalizes to general programs and general queries. More precisely, we
have the following result (see Apt and Pellegrini [10]).

Theorem 5.15 Let P be a general well-moded program and Q o general
well-moded query. Suppose that

e the head of every general clause of P is output linear.

Then P U {Q} is occur-check free. m

Transitive Closure

Let us see now how this result can be applied to TRANS-T. In Section
5.1 we had to introduce two modes for the member relation. Here a simpler
moding suffices, namely trans(~,-,+,+), list(+), member(-,+). Then
trans is well-moded and the heads of all general clauses are output linear.

90 Program Verification and Prolog

So we conclude by Theorem 5.15 that for e, v ground, TRANS-TU {trans(s,
t, e, v)} is occur-check free.

Dag

Extending the above moding by cyclic(+), acyclic(+) we can also
draw appropriate conclusions for the general program DAG-T: by Theorem
5.15 for e ground, DAG-T U {acyclic(e)} is occur-check free.

It is also possible to generalize the result on nicely moded programs
(viz. Theorem 3.23) to the case of general programs. However, the concept
of a nicely moded general program does not prevent the use of non-ground
input positions in the queries. As a result general programs to which the
results on nicely moded general programs can be applied usually flounder.
So — in the framework of LDNF-resolution — this generalization is of
limited interest and consequently is omitted.

6 Conclusions

6.1 Dealing with “Ill-typed” Programs

In our analysis we only dealt with the “correctly typed” programs, i.e.
programs named XXX-T. These programs are easier to handle than their
corresponding “ill-typed” XXX versions, but they are much more inefficient
due to the added “type checks”.

It is possible to deal directly with the “ill-typed” programs, but the
study of their partial correctness is quite a nuisance, because it is awkward
to describe their unique supported Herbrand models in simple and intuitive
terms.

Therefore we propose the following alternative, which we illustrate on
the program QUICKSORT. Consider the typing of QUICKSORT defined in Sec-
tion 4.1. Let gs(s,t) be a well-typed query and let £ be an LD-derivation
of QUICKSORT U {qs(s,t)}. By Corollary 4.5, if the selected atom is of the
form part(sq,sg,s3,ss) then sy € Gae, and if the selected atom is of the
form app(sq,sq,s3) then so € List.

Thus in both cases in the corresponding LD-derivation of QUICKSORT-T
U {gs(s, t)} the inserted “type checks”, namely X < X and 1ist(Y), suc-
ceed with the empty computed answer substitution. Consequently, the
computed instances of the query gs(s,t) are the same w.r.t. both pro-
grams. In particular, for a list of gae’s s we have

{as(s, Ys)} QUICKSORT {qs(s,t)}.

The same approach can be applied to other pure Prolog programs and
programs with arithmetic.

For general programs we need to extend Definition 4.3. This can be done
by simply identifying pre(-A) with pre(A) and post(—A) with post(A).
Then the generalization of Corollary 4.5 to LDNF-derivations holds, so the

Krzysztof R. Apt 91

above technique is also applicable to general programs, in particular to
TRANS-T and DAG-T.

6.2 Final Remarks

The aim of this chapter was to show that it is possible to reason about cor-
rectness of various Prolog programs by means of simple arguments based on
syntactic analysis, declarative semantics, modes and types. We hope that
this work can form a basis for a similar study of other languages based on
the logic programming paradigm. In particular, it would be interesting to
carry out such a study for logic programs executed with a dynamic selec-
tion rule defined by means of delay declarations. Such dynamic selection
rules are for example present in Goédel, a declarative language designed by
Hill and Lloyd [20].

In general, all correctness properties studied in this chapter are unde-
cidable. However, certain aspects of the approach discussed here can be
automated. We conclude this chapter by discussing this point in some
detail and pointing out which issues require further investigation.

6.2.1 Termination

The approach to termination discussed here is based on the use of the
notion of acceptability. Apt and Pedreschi [8] noted that some fragments
of the proof of accceptability can be automated. In fact, they indicated
that in many cases the task of checking the guesses for both the level
mapping | | and the model I can be reduced to checking the validity of
universal formulas in an extension of Presburger arithmetic by the min
and mazx operators. The validity problem for such formulas is decidable.
In fact, Shostak [34] presented for this class a decision algorithm which
is exponential. Cinzia Pieramico of the University of Pisa implemented
this procedure for checking left termination w.r.t. a level mapping and a
Herbrand interpretation which are expressible in the above language and
verified mechanically that the quicksort program QS is left terminating.

De Schreye, Verschaetse and Bruynooghe [33] studied the problem of
automatic generation of level mappings and Herbrand interpretations w.r.t.
which the program is left terminating.

6.2.2 Partial Correctness

The approach to partial correctness reported in this chapter is to our knowl-
edge new and its (partial) automation needs to be further studied. It is
worthwhile to point out here that Theorem 5.10 implies that for left termi-
nating (non-floundering general) programs the membership problem for the
model Mp is decidable. So given such a (general) program, it is decidable
whether a ground (general) query successfully terminates.

However, the complexity of this decision problem is in general forbid-
dingly high because the results of Bezem [12] imply that every total recur-
sive function can be encoded in a model Mp.

92 Program Verification and Prolog

6.2.3 Occur-check Freedom

The methods proposed here can be trivially implemented because they are
based on syntactic analysis. However, to use Theorem 3.21 it is necessary
to generate modings for which this theorem can be applied. To this end
efficient algorithms are needed for generating modings for which a program
is well-moded. A test as to whether a query or clause is well-moded w.r.t.
a given moding can be efficiently performed by noting that:

e a query @ is well-moded iff every first from the left occurrence of a
variable in @) is within an output position;

e a clause p(s,t) — B is well-moded iff every first from the left occur-
rence of a variable in the sequence s, B, t is within the input position
of p(s,t) or within an output position in B.

(We assumed in this description that in every atom the input positions
occur first.)

As already mentioned, the concepts of nicely moded program and query
and Theorem 3.23 were also introduced in Chadha and Plaisted [15]. They
proposed two efficient algorithms for generating modings with the minimal
number of input positions, for which the program is nicely moded. These
algorithms were implemented and applied to a number of well-known Prolog
programs.

6.2.4 Absence of Errors

Our approach to proving absence of errors is based on Corollary 4.5. To
apply it one needs to generate typings which include >: Gaex Gae — T xT
for which a given program is well-typed. Aiken and Lakshman [1] showed
that the problem of whether a program or query is well-typed w.r.t. a
given typing is decidable for a large class of types which includes the ones
studied here.

6.2.5 Absence of Floundering

Our method of proving absence of floundering is based on the use of the
notion of well-modedness, already discussed in the context of the occur-
check freedom.

Acknowledgements

Joint research and discussions with Dino Pedreschi on the subject of verifi-
cation of logic programs helped us to clarify the opinions expressed in this
chapter. Also, we thank the referee for helpful comments.

Bibliography

1. A. Aiken and T. K. Lakshman. Automatic type checking for logic pro-
grams. Technical report, Department of Computer Science, University
of Illinois at Urbana Champaign, 1993.

10.

11.

12.

13.

14.

15.

16

Krzysztof R. Apt 93

K. R. Apt. Logic programming. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science, pages 493-574. Elsevier, 1990. Vol.
B.

K. R. Apt. Declarative programming in Prolog. In D. Miller, editor,
Proc. International Symposium on Logic Programming, pages 11-35.
MIT Press, 1993.

. K. R. Apt, H. A. Blair, and A. Walker. Towards a theory of declarative

knowledge. In J. Minker, editor, Foundations of Deductive Databases
and Logic Programming, pages 89-148. Morgan Kaufmann, 1988.

. K. R. Apt and H. C. Doets. A new definition of SLDNF-resolution.

Journal of Logic Programming, 18(2):177-190, 1994.

K. R. Apt and M. Gabbrielli. Declarative interpretations reconsidered.
In P. van Hentenryck, editor, Proceedings of the 1994 International
Conference on Logic Programming, pages 74-89. MIT Press, 1994.

. K. R. Apt and E. Marchiori. Reasoning about Prolog programs: from

modes through types to assertions. Technical Report CS-R9358, CWI,
Amsterdam, The Netherlands, 1993. To appear in Formal Aspects of
Computing (FACS).

. K. R. Apt and D. Pedreschi. Reasoning about termination of pure Pro-

log programs. Information and Computation, 106(1):109-157, 1993.

. K. R. Apt and D. Pedreschi. Modular termination proofs for logic and

pure Prolog programs. In G. Levi, editor, Advances in logic program-
ming theory. Oxford University Press, 1994. To appear.

K. R. Apt and A. Pellegrini. On the occur-check free Prolog programs.
ACM Toplas, 16(3):687-726, 1994.

K.R. Apt and E.-R. Olderog. Verification of Sequential and Concur-
rent Programs. Texts and Monographs in Computer Science, Springer-
Verlag, New York, 1991.

M. A. Bezem. Strong termination of logic programs. Journal of Logic
Programming, 15(1 & 2):79-98, 1993.

A. Bossi and N. Cocco. Verifying correctness of logic programs. In
Proceedings of TAPSOFT ’89, Lecture Notes in Computer Science,
pages 96-110. Springer-Verlag, 1989.

F. Bronsard, T. K. Lakshman, and U. S. Reddy. A directional type
system for Prolog: unifying the notions of types and directionality.
Technical report, Department of Computer Science, University of Illi-
nois at Urbana Champaign, 1993.

R. Chadha and D. A. Plaisted. Correctness of unification without
occur check in Prolog. Journal of Logic Programming, 18(2):99-122,
1994.

K. L. Clark. Predicate logic as a computational formalism. Res. Report

94

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30

Program. Verification and Prolog

DOC 79/59, Imperial College, Dept. of Computing, London, 1979.

H. Coelho and J. C. Cotta. Prolog by Example. Springer-Verlag, Berlin,
1988.

P. Dembinski and J. Maluszynski. AND-parallelism with intelligent
backtracking for annotated logic programs. In Proceedings of the In-
ternational Symposium on Logic Programming, pages 29-38, Boston,
1985.

P. Deransart, G. Ferrand, and M. Téguia. NSTO programs (not sub-
ject to occur-check). In V. Saraswat and K. Ueda, editors, Proceedings
of the International Logic Symposium, pages 533-547. The MIT Press,
1991.

P. M. Hill and J. W. Lloyd. The Gédel Programming Language. The
MIT Press, 1994.

M. Kalsbeek. The vanilla meta-interpreter for definite logic programs
and ambivalent syntax. Technical Report CT-93-01, Department of
Mathematics and Computer Science, University of Amsterdam, The
Netherlands, 1993.

K. Kunen. Some remarks on the completed database. In R. A. Kowal-
ski and K. A. Bowen, editors, Proceedings of the Fifth International
Conference on Logic Programming, pages 978-992. The MIT Press,
1988.

K. Kunen. Signed data depedencies in logic programs. Journal of
Logic Programming, 7:231-246, 1989.

J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag,
Berlin, 1984.

J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag,
Berlin, second edition, 1987.

A. Martelli and U. Montanari. An efficient unification algorithm.
ACM Transactions on Programming Languages and Systems, 4:258-
282, 1982.

M. Martelli and C. Tricomi. A new SLDNF-tree. Information Pro-
cessing Letters, 43(2):57-62, 1992.

B. Martens and D. De Schreye. Why untyped non-ground meta-
programming is not much of a problem. Technical Report CW 159 (Re-
vised November 1993), Department of Computing Science, Katholieke
Universiteit Leuven, Belgium, 1993. To appear in Journal of Logic
Programming.

C. S. Mellish. The Automatic Generation of Mode Declarations for
Prolog Programs. DAI Research Paper 163, Department of Artificial
Intelligence, Univ. of Edinburgh, August 1981.

D. Pedreschi. A proof method for run-time properties of Prolog pro-

31.

32.

33.

34.

35.

36.
37.

38.

Krzysztof R. Apt 95

grams. In P. van Hentenryck, editor, Proceedings of the 1994 Interna-
tional Conference on Logic Programming. MIT Press, 1994. To appear.
U. S. Reddy. Transformation of logic programs into functional pro-
grams. In International Symposium on Logic Programming, pages 187-
198, Silver Spring, MD, February 1984. Atlantic City, IEEE Computer
Society.

D. De Schreye and S. Decorte. Termination of logic programs: the
never-ending story. Journal of Logic Programming, 19-20:199-260,
1994.

D. De Schreye, K. Verschaetse, and M. Bruynooghe. A framework for
analyzing the termination of definite logic programs with respect to
call patterns. In Proceedings of the International Conference on Fifth
Generation Computer Systems 1992, pages 481-488. Institute for New
Generation Computer Technology, 1992.

R. E. Shostak. On the SUP-INF method for proving Presburger for-
mulas. J. ACM, 24(4):529-543, 1977.

R. Stark. A direct proof for the completeness of SLD-resolution. In
Borger, H. Kleine Biining, and M.M. Richter, editors, Computer Sci-
ence Logic 89, Lecture Notes in Computer Science 440, pages 382-383.
Springer-Verlag, 1990.

L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.

K. Stroetman. A completeness result for SLDNF resolution. The
Journal of Logic Programming, 15:337-357, 1993.

J. D. Ullman and A. van Gelder. Efficient tests for top-down termina-
tion of logical rules. J. ACM, 35(2):345-373, 1988.

